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Do Covariant Projection Elements Really
Satisfy the Inclusion Condition?

S. Caorsi, P. Fernandes, and M. Raffetto

Abstract—Spurious modes which often are found among finite-element
solutions of electromagnetic eigenvalue problems do not occur when
covariant projection elements are used. It has been claimed that this hap-
pens because covariant projection elements satisfy the inclusion condition,
but they do not satisfy it—as is proven in this paper.

I. INTRODUCTION

It is well known that depending on the type of elements used, finite-
element solutions of electromagnetic eigenproblems may or may not
contain spurious modes. For example, the spectrum calculated by
using Lagrangian elements is usually polluted by spurious modes
[1]–[5], whereas it is well known by experience [5], [6], and has
rigorously been proved [7], [8] that edge element approximations are
spectrally correct (and, in particular, are spurious free).

In [9], Crowley, Silvester, and Hurwitz introduced the covariant
projection elements and proposed the so-called inclusion condition
as a sufficient condition to avoid spurious modes. However, we have
recently proved [10], [11] that the inclusion condition need not be
satisfied by a spurious-free finite-element basis. In [10], we point out
also that in practice, the inclusion condition seems too strong to be
useful. As a matter of fact, edge elements (though spurious free) do
not satisfy the inclusion condition [10], [11].

It is still an open question whether covariant projection elements,
which are known by experience as spurious free, satisfy the inclusion
condition or not. In [9] it is claimed they do, but no proof is reported.
In this paper, it is proven by providing a counter example that they
do not.

II. A SIMPLE EXAMPLE NOT SATISFYING THE INCLUSION CONDITION

Let us consider the problem of finding the eigenmodes at the cutoff
of the square waveguide whose cross section is the domain


 = f(x; y) 2 R
2
j � 1 � x � 1;�1 � y � 1g: (1)

Assuming that

"r = �r = 1 in 
 (2)

this problem reads

r� (r�EEE) = k
2
EEE in 
 (3)

nnn�EEE =0 on
 (4)

or, in weak form:
Find k2 � 0 andEEE 2 H0(curl;
);EEE 6= 0 such that




(r�EEE) � (r�WWW ) d


= k
2




EEE �WWW d
; 8WWW 2 H0(curl;
) (5)
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Fig. 1. The cross section of a square waveguide discretized by using a single
covariant projection element.

where

H0(curl;
)

= fvvv 2 [L
2
(!)]

3
jr � vvv 2 [L

2
(
)]

3
; nnn�EEEj@
 = 0g (6)

and

[L
2
(
)]

3
= vvv: 
! R

3




vvv � vvv d
<1 : (7)

Let us discretize the above eigenvalue problem by using a single
covariant projection element [9], [12] (see Fig. 1). The electric field
is then interpolated as follows [12]:

EEE =

6

i=1

ExiXi(x; y)x̂xx+

6

i=1

EyiYi(x; y)ŷyy (8)

whereXi(x; y) andYi(x; y); i = 1; � � � ; 6 are the following mixed-
order trial functions:

Xi(x; y) =�l2(x)qi(y); i = 1; 2; 3 (9)

Xi(x; y) = l1(x)qi�3(y); i = 4; 5; 6 (10)

Yi(x; y) =Xi(y; x); i = 1; � � � ; 6 (11)

and

l1(x) =
1

2
(1� x); l2(x) =

1

2
(1 + x); (12)

q1(y) =
1

2
y(y � 1); q2(y) = (1� y

2
);

q3(y) =
1

2
y(y + 1): (13)

In order to satisfy (4), we have to chooseEx1 = Ex2 = Ex4 =

Ex6 = 0 andEy1 = Ey3 = Ey4 = Ey6 = 0, i.e., the only degrees
of freedom areEx2, Ex5, Ey2, andEy5 (see Fig. 1).

Among the possible finite-element fields satisfying (4), let us
consider the following ones:

EEE1 =(X2(x; y) +X5(x; y))x̂xx+ (Y2(x; y) + Y5(x; y))ŷyy

=(x(y
2
� 1))x̂xx+ (y(x

2
� 1))ŷyy; (14)

EEE2 =(X2(x; y)�X5(x; y))x̂xx = (y
2
� 1)x̂xx; (15)

EEE3 =(Y2(x; y)� Y5(x; y))ŷyy = (x
2
� 1)ŷyy; (16)

EEE4 =(X2(x; y) +X5(x; y))x̂xx� (Y2(x; y) + Y5(x; y))ŷyy

=(x(y
2
� 1))x̂xx� (y(x

2
� 1))ŷyy: (17)
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From these explicit expressions we can easily calculate

r�EEE1 =0; r �EEE1 = x
2
+ y

2
� 2 (18)

r�EEE2 =�2yẑzz; r �EEE2 = 0 (19)

r�EEE3 =2xẑzz; r �EEE3 = 0 (20)

r�EEE4 =�4xyẑzz; r �EEE4 = y
2
� x

2
: (21)

We can also calculate the following integrals:




EEEi �EEEj d
 = 0; i 6=j; i =1; � � � ; 4; j =1; � � � ; 4 (22)

and




(r�EEEi) � (r�EEEj)d
 = 0; i 6= j; i = 1; � � � ; 4;

j = 1; � � � 4: (23)

From (22), it follows thatfEEEkg
4

k=1 is an orthogonal basis of the
finite-element space, i.e., a generic finite-element fieldWWW can be
expanded asWWW = �4

k=1 �kEEEk:

In order to verify that the four finite-element vector fieldsEEE1,
EEE2, EEE3, EEE4 are just the eigenmodes of the considered discrete
eigenproblem, let us calculate




(r�EEEi) � (r�WWW )d


=



(r�EEEi) � r �

4

k=1

�kEEEk d


=

4

k=1

�k



(r�EEEi) � (r�EEEk)d
 (24)

and




EEEi �WWW d
 =



EEEi �

4

k=1

�kEEEk d
 =

4

k=1

�k



EEEi �EEEk d
:

(25)

By using (22) and (23), we obtain




(r�EEEi) � (r�WWW )d
 = �i



(r�EEEi) � (r�EEEi)d


(26)

and




EEEi �WWW d
 = �i



EEEi �EEEi d
: (27)

Now, let us definek2i ; i = 1; � � � ; 4, by




(r�EEEi) � (r�EEEi)d


= k
2

i



EEEi �EEEi d
; i = 1; � � � ; 4: (28)

Then, from (26) to (28), we have




(r�EEEi) � (r�WWW )d


= k
2

i



EEEi �WWW d
; 8WWW 2 span fEEEkg
4

k�1; i = 1; � � � ; 4

(29)

and this means thatEEEi is an eigenvector andk2i is the corresponding
eigenvalue.

The inclusion condition [9] is

PN (S) � S (30)

whereS is the space of vector fields spanned by the finite-element
basis andPN (S) is the orthogonal projection ofS on the spaceN
of irrotational vector fields of the continuous problem (5). For the
sake of precision

S = spanfEEEkg
4

k=1 (31)

and

N = fvvv 2 H0(curl;
)jr � vvv = 0g: (32)

Checking the inclusion condition directly is not an easy task.
However, as proven in [10], the solenoidality of the nonirrotational
modes of the discrete eigenproblem is necessary for the inclusion
condition to be satisfied. However,EEE4 is just a mode of the discrete
eigenproblem which is neither irrotational nor solenoidal (21). Hence,
in the particular example considered, this necessary condition for
the inclusion condition, and then the inclusion condition itself, are
violated. This is sufficient to conclude that, in general, covariant
projection elements do not satisfy the inclusion condition.

III. CONCLUSIONS

In [10] and [11] we have proven that the inclusion condition
is sufficient, but not necessary to avoid spurious modes, and that
edge elements do not satisfy it. It was still an open question
whether covariant projection elements satisfy the inclusion condition
or not—in this paper, we have proven that they do not.
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